Numerical Range on Weighted Hardy Spaces as Semi Inner Product Spaces
نویسنده
چکیده
The semi-inner product, in the sense of Lumer, on weighted Hardy space which generate the norm is unique. Also we will discuss some properties of the numerical range of bounded linear operators on weighted Hardy spaces.
منابع مشابه
$C^{*}$-semi-inner product spaces
In this paper, we introduce a generalization of Hilbert $C^*$-modules which are pre-Finsler modules, namely, $C^{*}$-semi-inner product spaces. Some properties and results of such spaces are investigated, specially the orthogonality in these spaces will be considered. We then study bounded linear operators on $C^{*}$-semi-inner product spaces.
متن کاملExtension of Hardy Inequality on Weighted Sequence Spaces
Let and be a sequence with non-negative entries. If , denote by the infimum of those satisfying the following inequality: whenever . The purpose of this paper is to give an upper bound for the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also e(w,?). We considered this problem for certain matrix operators such as Norlund, Weighted mean, Ceasaro and Copson ma...
متن کاملWeighted Multilinear Hardy Operators on Herz Type Spaces
This paper focuses on the bounds of weighted multilinear Hardy operators on the product Herz spaces and the product Morrey-Herz spaces, respectively. We present a sufficient condition on the weight function that guarantees weighted multilinear Hardy operators to be bounded on the product Herz spaces. And the condition is necessary under certain assumptions. Finally, we extend the obtained resul...
متن کاملThe Backward Shift on Dirichlet-type Spaces
We study the backward shift operator on Hilbert spaces Hα (for α ≥ 0) which are norm equivalent to the Dirichlet-type spaces Dα. Although these operators are unitarily equivalent to the adjoints of the forward shift operator on certain weighted Bergman spaces, our approach is direct and completely independent of the standard Cauchy duality. We employ only the classical Hardy space theory and an...
متن کاملNORM AND INNER PRODUCT ON FUZZY LINEAR SPACES OVER FUZZY FIELDS
In this paper, we introduce the concepts of norm and inner prod- uct on fuzzy linear spaces over fuzzy elds and discuss some fundamental properties.
متن کامل